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COHERENT AND NONCOHERENT
DETECTION AND PROCESSING

The question concerning the relative advantages of coherent and noncoher
ent detection and processing arises in all sensing systems, and also in
communication 'systems, and is concerned with evaluating the benefits
associated with preserving phase information in the signal in the processing.
In Chapter 5 it was shown that matched filtering involves a correlation of the
received signal with an exact replica of itself, which therefore includes its
phase. Hence matched filtering is synonymous with coherent detection, in
the sense that the phase of the signal is assumed to be known exactly. There
is however another form of coherent detection and processing in which the
transmitted waveform consists of a train of pulses whose responses are
summed, or "integrated" in a manner such that the phase relationship
between successive pulses is maintained, but the absolute value of the phase
mayor may not be known exactly. This is referred to as coherent integra
tion. If on the other hand the summation is performed without regard to the
phase relationship between pulses the process is called non-coherent inte
gration.

In this chapter, we first consider noncoherent detection of a single pulse
and compare the results with coherent detection for which, as noted, the
results have already been. obtained in Chapter 5. Then the improvement in
SN R yielded by coherent and non-coherent integration of a train of pulses
shall be calculated and compared. Finally the performance of coherent and
noncoherent integration in terms of detection and false alarm probabilities
shall be analyzed and compared. A summary of the results of this chapter is
presented in Section 6.5.

As is discussed in Chapter 1, the processing of sensor data may include
translation of the carrier frequency down to a more manageable IF. This

117
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LT
cos 2(2rrfot + 8) dt = f [1 + ~ iT cos(4rrfot + 28) dt]

= f [1 + 2:f
o
T sin 2rrfoT cos(2rrfo T + 8)] == f

(6.4)

As before, because the signal is of finite duration. the approximation in
passing from the discrete to the continuous representation improves in the
limit as B is allowed to become very large.

In the non-coherent case 8 in (6.2) is unknown. and the likelihood ratio
will therefore be of the form P(YIH,.8)IP(YIHo), which will have a
different unknown value for each value of the parameter 6. Therefore, since
no auxiliary information about 8 is available, it is reasonable to assume 8 to
be uniformly distributed over (0,2rr) and we deal with an averaged likeli·
hood ratio of the form

l.
U1
-..J

step however is irrelevant to the results which follow, and to simplify the
presentation is therefore omitted.

6.1 IDEAL NONCOHERENT DETECTION OF A SINGLE PULSE

Consider a situation in which the signal of interest is a rectangular carrier
pulse of duration r t

of the form APT(t) cos(2rrfot + 8) where

{
I, OstsT

PT(t) = O. otherwise

The two hypotheses are

HI: y(t) = s(t) + n(t) = APT(t) cos(2rrfot + 8) + n(t)

Ho: y(t) = n(t) (6.1)

where n(t) is a realization of mean-zero, white Gaussian noise with two
sided spectral density No/2. In this case. in parallel with the discussion in
Section 5.4.1, it is assumed that observations of y(t) are made at the output
of a hypothetical rectangular bandpass filter of bandwidth B centered at the
carrier frequency fo. as illustrated in Figure 6.1.

The bandwidth B must be sufficiently large to pass essentially all the
signal energy, which will be the case if B ~ I IT. In this case, by the
carrier-sampling theorem, with sampling at the Nyquist rate there are BT
complex samples in a time T and, in a manner essentially identical to that
used to obtain (5.42) from (5.39) (also see Exercise 6.1), the likelihood ratio
in this case is

(" P(YIH•• 8)P(8) d6
J, P(yIHo)

I (2" { [2B (
= 2rr Jo exp ~ Jo y(t)A cos(2rrfot + 8) dt

2B (, 2 ]}- 20- 2 Jo A'cos (2rrfot+ 8)dt d8

The integral in the exponent involving cos 2(2rrfot + 8) is

(6.3)

exp[ -(1 120-2r.~~ (y(t;) - 5(t;)2]

exp[ -(1 120-2) r.~_TI /(t j )]

_ exp[ -(2BI20-2) I[ (y(t) - A cos(2rrfot + 8»2 dt]

- exp[ -(2BI20-2) 1(; /(t) dt]
(6.2)

where the approximation is very good for fo T, the number of cycles per
pulse, greater than about 3 or 4, which will be assumed to be the case.
Therefore, since 0- 2= (No/2)(B + B) = NoB the likelihood ratio is

exp(-A
2
TI2No) (2tT{exp[_ 2A (T y(t)COS(2rrfot+ 8)dt]}d8

2rr Jo No Jo (6.5)

B B
• • • •

I I

-10 .....re 6.1 Rectangular bandpass filter.
10

The exponent in the integrand can be written as

2A (
- No Jo y(t) cos(2rrfot + 8) dt

2A 2A.
= - -[cos8+ - QSIO 8

No No

[= foT y(t) cos 2rrfot dt, Q = foT y(t) sin 2",fot dt (6.6)

• A generalized treatment of this subject using arbitrary complex signals is presented in Chapter
10. and (6.5) becomes, using (3.52)



where Z = VIz + QZ and 10 is the modified Bessel function of order zero.'
The likelihood Ratio Test (LRT) is therefore: choose HI if

and choose the nun hypothesis Ho otherwise; in (6.8) the exponent has been
written in terms of the signal energy E = A ZTl2. Thus the modified Bessel
function 10 is the optimum non-coherent detection characteristic.

In what follows only the Neyman-Pearson criterion shall be applied.
Since lo(x) is a monotonically increasing function of x. the LRT (6.8) can be
expressed in an equivalent form as: choose the alternative HI if either

121

LOW·PASS
FILTER

ENVELOPE
DETECTOR

hIt) =
Pr (T-ll cos 2Tr '0 (T·t)

[(1' y(r)COs27TJ;,rdrf +(!o' y(r)Sin21TJ;,rdr)I/2

6.1 IDEAL NONCOHERENT DETECTION OF A SINGLE PULSE

1,y(r)h(t - r) dt = (' y(r) cos 21Tht(T - t + r) dro In

= cos 21TJ;,(T - t) l' y(r) cos 21TJ;,r dr

- sin 21TJ;,(T - t) l' y(r) sin 21TJ;,r dr
n

Pr(1) cos 2Trlol

Figure 6.2 Quadrature receiver with envelope detection.

Prll) sin 2Tr 'ot

r-
T1( ldl 1--1 ( )2

0

V(I) I '-- ,,-..., I . (2

1~
T I

0

[(!or y(r)'cos 21TJ;,r drf + (!or y(r) sin 21T/or drrr z
= V[z + Q2 = z

(6.10)

and the envelope is

which at the time of correlation. t = T, is equal to

As is discussed in Chapter 1. the envelope detector is also referred to as a
linear detector. which. as illustrated in Figure 6.4. refers to that property of
the detector whereby the output is proportional to the input when the input
is positive. The operation of the detector however is of course highly

(6.7)

(6.8)

(6.9)

(2AZ) > EINoTJ10 No - e .,

,/~2-----' z z z '
Z = V I + Q. ~ T/ or z = [ + Q ~ T/-

( AZT) 1Z
" [ 2A ] dOexp - - exp - - (/ cos O· - Q sin 0) -

2No 0 No 27T

( A2T) (2AZ)
=exp - 2N 10 N

o 0

COHERENT AND NONCOHERENT DETECTION AND PROCESSING120

where the threshold T/ (not necessarily the same as that in (6.8» is
detennined by the specified false alarm probability. In what follows we
choose the former case and deal here with z and T/. In Chapter 10. which
deals with this subject using generalized complex signals. identical results
are obtained using square-law detection which demonstrates the exact
equivalence of envelope and square-law detection in this case.

Before dealing with the detennination of T/ for the non-coherent case. let
us consider the generation of the statistic z. This can be accomplished by the
system illustrated in Figure 6.2 which is customarily referred to as a
quadrature receiver, in which the paths employing multiplication by
cos 27T/ot and sin 27TJ;,t are the in-phase and quadrature channels. yielding [
and Q respectively.

Figure 6.2 is reminiscent of the correlation detector of Figure 5.4. That is.
as discussed in connection with that figure. the multiplication-and-integra
tion processes in the in-phase and quadrature channels in Figure 6.2 are
equivalent to filters h(t) matched to PAt)cos21TJ;,t and Pr(t)sin27T/ot
respectively. Furthennore. the squaring adding and square-root operations
which follow amount to envelope detection. The statistic z can therefore be
generated by the system illustrated in Figure 6.3. To show this. note that for
input y(t) the output at any arbitrary time t is

U1
(Xl

'There should be no confusion between the notation In. the zero-order modified Bessel
function. and I or I, which denotes the in-phase channel term. Figure 6.3 Equivalent of quadrature-receiver.
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v .. INPUT

OUTPUT

OUTPUT which is essentially that of a bandpass filter of bandwidth -1/ T with the
indicated phase characteristic. which of course is irrelevant here since the
filtering is followed by envelope detection. Hence. for non-coherent detec
tion the filtering operation is in practice implemented by a bandpass filter,
with essentially arhitrary phase characteristics, whose bandwidth is nominal
ly equal to that of the signal. As is discussed in (20). the purpose of
bandwidth matching is to maximize SNR. Suppose the bandwidth is very
narrow. If it is gradually widened, both the signal and the noise energy at
the output will increase, but the signal energy will increase faster because it
builds up coherently over its duration whereas the noise contributions at
successive time instants are independent. Thus SNR increases. When the
bandwidth is nominally equal to that of the signal however. further widening
leaves the signal energy at the output unchanged and serves only to increase
the noise, and SNR decreases. Hence the optimum is achieved when the
filter bandwidth equals the signal bandwidth.

The filter bandwidth in this case is therefore matched to the signal
bandwidth. If one wishes to be more careful the actual spectral shape of the
filter can be matched to that of the signal. However. the matching is in
amplitude only, and we do not actually have a matched filter since. as is
discussed in connection with Figure 5.5, true matched filtering is equivalent
to having available an exact replica of the signal. which includes the phase.

INPUT

OUTPUT

a) LINEAR (ENVELOPE)
DETECTOR

b) SQUARE LAW
DETECTOR

'>

INSTANT OF
CORRELATION

.... .... ....

' .......... "

_/

/'

....

.... ....

a) MATCHED

b) NOT MATCHED

Figure 6.S Outputs of matched and unmatched filters.

INPUT

Figure 6.4 Various detector characteristics.

c) SQUARE LAW
DETECTOR

H(I) =iT cos 2"'/o(T - t)e -,21r!' dt

= e-i"'U-!o)T sin "'(1- frl)T + e-'1r(!·!ul
T sin rr(l + fr,)T (6.11)

2 ",(1 - ft.) 2 rr( f + ft.)

non-linear, as a result of which the output consists of a DC term equal to the

envelope V[2 + Q2, the carrier term. plus an infinite number of harmonics
of the input at 2fr" 3/0 , etc. It is for this reason that. as discussed in Chapter
1. the output of the envelope detector must be passed through a low-pass
filter or a video amplifier, which will eliminate the carrier term and the
unwanted hannonics. Similar comments apply to square-law detectors which
generate Z2. whose characteristics are shown in Figure 6.4c and d.

Now the transfer function of the filter in Figure 6.3 is

U1
1.0
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(6.12)

Now let 1= z cos dJ. Q = z sin dJ. with dX dY = dl dQ = :: dz ddJ. The expo
nent in (6.15) is then

with the same result for E( y 2
). Therefore, since X and Yare independent

Gaussian random variables their joint density is

, No (T, NoT No (r
E(X-) = T Jo cos-27Th,tdt= 4 + T J" COS47Th,tdt

NoT ~
"'" -4- =~, (6.14)

(6.16)
z' + (ATl2)~ - zATcos(O - dJ)

2~;

then to a very good approximation. again using (6.4)

[
(X2 + y 2

)] dX dY
P(X, Y) dX dY =exp - ~ --,"

2~, 27T~:

= exp[ _ 1
2

+ Q~ + (ATl2)~ - ~T(l cos 9 + Q sin 9)] dX d; (6.15)

2~: 27T~,

and since P(X. Y) dX dY = P(z. dJ) dz ddJ. the probability density of the
envelope z under HI is

£
2.. exp{-[z2+(ATI2)21/2~;}

P(z) = P(z, dJ) ddJ = z •
o ~:

We are now in a positIOn to compare quantitatively the effectiveness of
coherent. and noncoherent detection of a single pulse. Referring to (6.6), the
in-phase and quadrature components of the output of the bandpass filter in
Figure 6.3 at t = Tare

1= foT yet) cos 27Tfot dt = for A COS(27Tfot + 9) cos 27Th,t dt

( AT (T
+ Jo net) cos 27Tfot dt = 2 cos 9 + Jo net) cos 27Th,t dt

ATsin 9 ( .
Q= .. + Jo n(t) sI027Th,tdt

6.2 COMPARISON OF COHERENT AND NONCOHERENT
DETECTION OF A SINGLE PULSE

By the same token therefore, matched filtering is exactly equivalent to
coherent detection and as noted, the results of Chapter 5 apply; one might
denote the operation in this section as incoherent matched filtering [21/. To
illustrate the difference between the two cases consider the outputs of: (a) a
filter matched to a signal Pr(t)A COS(27Tfot + 0) and (b) that of a filter whose
impulse response is Pr(t)A sin 27Tfo(T - 0, which are shown in Figure 6.5
(see Exercise 6.3). For the matched filter the instant of correlation (i.e.
t = T) occurs simultaneously with a crest of the carrier yielding the max
imum peak response. In the non-coherent case this wiII generally not be the
case and the peak response may be smaller.

0'1
o

The threshold 1'/ in (6.8) is therefore determined from the false alarm
probability Pra using

which is the Rice distribution that was introduced in Section 3.6. with a
minor change in the argument (see Exercise 6.5).

Now under H", A = O. and since 10 (0) = 1 (6.17) becomes under the null
hypothesis the probability density for the envelope of noise alone. the
Rayleigh distribution

where the approximation of (6.4) has been used. The quantities

( AT cos 9
X =Jo n(t) cos 27Th,t dt =1- 2

(. ATsin 9
Y = Jo n(t) Sm 27Th)t dt = Q - 2

are each mean-zero Gaussian random variables with variances

E(X 2
) = E ( ( n(s)n(t) cos 27Tfot cos 27Th,S dt dsJo Jo

E(y2
) = E foT for n(s)n(t) sin 27Th)t cos 27Th,S dt ds

and since for white noise

(6.13)

1 (.. [ 'AT ]x 27TJo exp - ~ ~ cos(9- dJ) dq,..~:
=, exp{-[z2 +(ATI2)~J/2~;} (ZAT)

~ , 10 ,
~; 2~;

P(z)= Z2 exP(- ='2)
~: 2~a

(6.17)

(6.18)

No
E(n(s)n(t» = T <5(s - t) Joe exp( - z~/2~;) _"Z'2.,Z

Pro = z 2 dz = e •
" ~:

(6.19)
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whence, using (6.14)

where the numerical parameter y is determined from Pra through the
relationship

This can be put into a more convenient dimensionless form with the change
of variables x = z IU z from which

where a 2
= 2EINo.

The expression in (6.21) is known as Marcum's Q function (22], and
shows explicitly that detection probability depends only on Pra and on the
signal-to-noise ratio EIN". For coherent detection the results for the match
ed filter-(5.52) et seq.-are

Note that, in addition to Pra , the detection threshold depends on the
received signal energy in the coherent case (6.23), but only on the noise and
the integration time in the non-coherent case (6.20), which is somewhat
more convenient.

A comparison of coherent and non-coherent detection using (6.21),
(6.22) and (6.23) is presented in Figure 6.6 in terms of the value of Pd that
can be achieved for a given value of Pra as a function of signal-to-noise ratio
EI Nil" It is seen that: (1) for small values of EI No-say Eo < 3 dB-for any
given value of Pr., noncoherent detection requires from 2 to 3 dB more SNR
than that required by coherent detection in order to achieve the same value
of Pd ; (2) for large values of EIN,,-say >lOdB-the difference in SNR
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(6.24)

(6.23 )

(6.22)

(6.21)

(6.20)

T/=2Y~

Pra = HI - erf( y )]

Pd = ~ [ 1 + erf(n--y) ]
o

l
~ [ (x" + a 2) ]

Pd = lxexp - 2 lo(xa)dx
(-2 In Pta)!'

_r exp[-(z2+(AT/2)2)/2u;] (ZAT)
Pd -), Z " 10 " dz

" U z 2u~

and the detection threshold T/ is

(
NT )1 /2

T/ = (-2u; log Pra )112 = - -t- In Pra

and the detection probability Pd is

0'\
f--'c..
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required by the two schemes is less than -1 dB. and it is clear that with
further increase E I No the difference eventually becomes negligible.

These results may be understood as follows. With a coherent matched
filter the instantaneous sinusoidal amplitude of the filter output at some time
t is

[~t + f: n(T)COS21Th)TdT]COS21Th/(T-t)

-[Lr

n(T) sin 21Tfo T dT] sin 21Tfo(T - t) (6.25)

with exponent (r - A)2/2u z and A21u2= 2EINfl. So to summarize, with a
coherently matched filter. for which the input signal phase must be known
exactly. an advantage over non-coherent detection is achieved when EI No is
small. which is equivalent to an improvement in EINil by about a factor of
two which is seen in Figure 6.6. On the other hand. if EI Nil is large. say
> 10 dB, there is little difference between coherent and non-coherent match
ed filtering for a single pulse.

6.3 IMPROVEMENT IN SIGNAL·TO-NOISE RATIO BY
COHERENT AND NONCOHERENT INTEGRATION

where. again. (6.4) has been used and 8 has been set equal to zero for
convenience. In contrast with the non-coherent case (e.g. (6.12». the signal
component is contained entirely within the in-phase channel and, referring
to (3.45), therefore contends with only the in-phase noise component; the
quadrature channel need not come into play. Now the signal component at
the matched filter output at the instant of correlation is A TI2 and from
(6.14), E(X2) = E( y2) = No Tl4. Hence SNR for a matched filter is there
fore A 2T 2INoT= A 2TINo = 2EINo'

On the other hand, in the non-coherent case both the in-phase and
quadrature noise components come into play. and in a similar calculation
the noise term would be NoTl2. This is clear from the Rayleigh distribution
for the envelope of noise alone, for which E(r2

) = 217
2
. Hence. if the signal

amplitude A is not very large relative to 17, both noise components affect the
random fluctuations in the envelope equally, and SNR is just EI No.
However. if A is relatively large the fluctuations in the envelope of signal
plus noise will be caused for the most part only by those noise components
in phase with the signal and the signal-to-noise ratio is therefore effectively
increased by 3 dB. To show this,t write the envelope of (6.24) as:

6.3.1 Noncoherent Integration

The noncoherent case shall be considered first. Equation (6.7) gives the
likelihood ratio for a single observation. It then follows at once that for M
independent' observations the likelihood ratio is

In the previous section coherent and noncoherent detection have been
compared when the signal consists of a single pulse. In such cases the
sensitivity of the sensor-that is, the maximum range at which a target can
be reliably detected-is limited by the maximum available energy per pulse.
The sensitivity can be significantly increased however, with no increase in
peak power, by transmitting waveforms consisting of a large number of
pulses and adding up their cumulative effect; this technique is also used to
improve SNR in communication systems. In this case the average power
PrTITp • where Tp is the interpulse spacing, and Pr is the transmitted signal
power per pulse. must be kept within the capability of the transmitter-the
quantity TI Tp is known as the duty factor. As has been noted, there are two
approaches to this type of signal processing, known as non-coherent integra
tion and coherent integration, which will now be evaluated and compared in
terms of the improvement in SNR that is achieved in the two cases.

0'\

""

[(A + nc)2 + n~]112 = A(l + 2nc + n~ + n;)"2
A A 2

n
2 + n

2

"'" A + n + _c__, - A +
c 2A - nc (6.26)

M
e-MA2TI2No n lo( 2AZ;)

.=1 No
(6.28)

(6.27)

if A is large. Hence the fluctuations in the observable are carried primarily
by nc' and since E(n;) = 17

2 = NoB = NoIT, then:

A 2 A 2T 2E
17 2 = No = No

From still another point of view. let us also recall (see Exercise 3.10) that
if EINo is large the Rice distribution can be approximated as a Gaussian.

• This can also be i11l11trated by a simple sketch based on Figure 3.9b.

where Zi = Vi; + Q; is the ith output of the detector in Figure 6.3 and

I; =(LT

Y;(T)COS21TfoTdTr

Q~ = (!oT Y;(T) sin 21TfoT dTr (6.29)

where y;(t) is the ith observation. i = 1, 2, ... ,M. The extension of the
single-pulse LRT of (6.8) to a pulse-train waveform therefore becomes,
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after taking logarithms. declare HI if and (6.31) becomes, choose HI if

;= I

M (2AZ r ) MA
2
TI In 10 N ~ 7:fiJ" + In TJ

,~I 0 n
(6.30) I

M MAT Nil
Z > -- + -lnTJ/ - 4 2A (6.32)

(6.31)

and with the arrival of the signal the trace would be deflected to a value

OSCILLOSCOPE
TRACE

(6.33)_ (! -2)112
U a - an - an

In this case the square-law detector in Figure 6.7 would be replaced by a
linear, or envelope. detector. Thus. the rule for optimal implementation of
the ideal Bessel function characteristic is to use linear detection for large
SNR and square-law detection for small SNR. However there is little
difference in performance for most cases of interest [211·

Continuing with square-law detection, we now introduce the deflection
signal-to-noise ratio. If one were observing the output of a nonlinear
detector on an oscilloscope, the appearance of the trace with the arrival of a
signal at time to would typically be as illustrated in Figure 6.8. Although,
prior to to the detector input consists of mean-zero Gaussian noise, because
of the nonlinear operation the mean value at the output is no longer zero.
which has been shown. Thus, prior to the time tl)' the trace an for noise only
has some nonzero average value an' and rms fluctuation

( 2AZi) [ (2Az r )2] (2AZ i )2In/-=Inl+- =-
n ~ ~l ~

In(x) "'" 1 + x 2

The process of summing successive outputs after detection is illustrated in
Figure 6.7. The integration is noncoherent because the phase information
which contains the phase relationship between successive pulses is destroyed
in the detection process.

For completeness, for large values of 2Az,INo, In{2Az,I No) is approxi
mated by

(
2AZ,) exp(2Az/No)I -- =_:.....:...._~~

o No (47TAz,INn)"2

and the In characteristic is implemented by a square-law detector. Equation
(6.30) therefore becomes

~ 2 MTNo N~
L.. z ~-- + --2 In TJ
,_I r 8 4A

Now since the statistic consists of a sum of terms instead of a single term
as in (6.8), the monoticity argument that was used there can no longer be
applied and implementation of the In characteristic. which as noted above is
optimum for noncoherent detection. must be considered. It has been shown
in Section 6.2 that the difference between coherent and noncoherent
detection of a single .pulse becomes negligible when SNR is large. In the
interest of this comparison therefore let us consider the case when 2Az,!Nn
is small, and then make use of the approximation for small x

Thus

0'1
W

so that

(
2AZ;) 2Az; 1 (47TAZi) 2Az,In I -- = -- - - In -- =--

o No No 2 No Nn ..Io to

Yi(t).1 h(l) •

PrtT-I) cos 27Tlo(T-I)
SQUARE-LAW

DETECTOR
LOW-PASS

FILTER L

THRESHOLO
COMPARISON t

SIGNAL
ARRIVAL

TIME

Fipre 6.7 System for post-detection integration. Figure 6.8 Output of non-linear detector.
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a .... n · For an observer who is looking for the deflection of the trace as an
indication of the presence of a target (or a digital signal pulse) the quantity

For the same reasons discussed in connection with (6.4) the integrals with
integrands sin 21rh, T cos 21rh, T are negligible. and also

~-~

(Ta
( sin 22 1rh) T dT = ( cos221rh, T dT == _TzIn In

the ith output of the square-law detector when the signal is present is

is a reasonable measure of the extent to which the target's presence would
be detected. For example, a value of 10 would mean that the average
deflection from an due to the presence of a target is ten-times the rms
fluctuations of the trace due to noise.

In the case of interest here the observed quantity is the result of
integration of M successive outputs of the square-law detector. given by
Z = E~, /(i) and the deflection signal-to-noise ratio DSNR /231 is defined
here as

Hence. as before. using the notation

x -= (n,(T)cOSZ1rh,TdT
I Ju

Y/ = LT

";(T) sin 21rh,T dT (6.37)

y,(f) -= APT(f) cos(2nlnf + 9,) + n,(f)

where (Tz = (Z~ - i~)1/2. The quantity Z, .... involves summation of square
law-detector outputs z~ ... n(i) when signal and noise are present, and Zn
denotes noise only. We now calculate DSNR. The ith observation Y;(f) is

with the usual assumptions for n(f). and using (6.10)

z~ ... n(i) = [!oT /A cos(21rfoT + 9,) + nj(T)! cos 21rh,T dTr
+ [LT

[A COS(21rh, T + 9,) + n,(T)I sin 21rh, T dTr= I; + Q;
(6.35)

it is easily shown that (see Exercise 6.6).

(6.39)

(6.38)

Also by using the identity for Gaussian random variables ~,

(
AT )~ (AT )2z; ... n(i) = 2 cos 9; + X; + 2 sin 9; + Y,

A~T2

= -4- + AT(X, sin 9, + Y, cos 8,) + X; + Y;

X, and Y, have the following properties. Referring to (6.14) et seq.

NT
E(X;) = E(Y;)=-i-

E( ~I ~2~3~4) = E( ~I ~~)E( fl~4) + E( ~I f,)E( ~~~4)

+ E(~1~4)E(~~~3) (6.40)

(6.34)
i -

DSNR = ''''n - Zn
(Tz

0'1
~

where in the interest of maximum generality the unknown signal phase 9; is
allowed to vary randomly and independently over (0. 21r) between succes
sive observations. The terms I, and Q; are explicitly

Ij = A cos 9; (T cos 21r2foT dT - A sin 9; (T sin 21rh,T cos 21rh,T dTJo Jo

+ LT

nj(T) cos 21rfnT dT

Q; = A cos 9; LT
cos 21rfoT sin 21rfoT dT - A sin 9, !oT sin 21rf2h ,T dT

+LT

"/(T) sin 21rfoT dT (6.36)

4 4 N~T2
E(X;) = E(Y,) = 3 16 (6.41)

and

2T 2
2 2 2 2 No

E(X, Y,) -= E(X, )E(Y,) = 16 (6.42)

That is. X; and Y; are uncorrelated. And by setting A= 0 in (6.38)

E[z~(i)J = E(X; + Y;) = N;T (6.43)

With the use of these results, the numerator of (6.34) is
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In the double-summations in which i "e j there are M(M - I) terms. in which
X; and X~ are independent. as are Y; and Y~. Also by (6.42) X,2 and Y~ are
independent for all i. Equation (6.47) then becomes. using (6.39)-(6.44):

where E = A
2
T/2 in the signal energy. Since in this scheme the integration

takes place at the output of the detector, noncoherent integration is also
referred to as post-detection integration, which yields an improvement in
DSNR by a factor equal to the square root of the number of summations.
For a linear detector it can be shown that the improvement also goes as
\1M. This case however is more cumbersome and is not worked out here.

0'1
(JI

_ _ [M M]' 2
Z, .. n - Zn = E ,~ z;"n(i) - ,~ z~(i) = MA'T

The square of the denominator 17~ is

17~ = E(Z:) - [E(Z.)1 2

= E[(i X; + y~f] - [E i (X,2 + y~)r
,-I 1= I

= E"L (X; + y;) 2: (X~ + Y~) - M 2
( N~Tr

, I ...

where (6.39) has been used, and the summation terms reduce to

2: (X~ + Y~) 2: (X~ + Y~)
, I

= 2: X: + 2: 2: X; X~ + 2: Y: (i,e j)
, I

+ 2: 2: Y~ Y~ + 2 2: X; 2: Y; (i"e j)
, I

E 2: (X; + Y7) 2: (X; + Y;) = MN~T2 + M1N~T2

and using (6.46)

17~ = MN~T2
4

from which. using (6.44), (6.34) is

MA1T 2/4 A1T E
DSNR = 1 1 4 )112 = VM 2N = '1M -N

liT / 0 II

(6.44)

(6.45)

(6.46)

(6.47)

(6.48)

(6.49)

(6.50)

6.3.2 Coherent Integration

According to [231 the first published report proposing the use of coherent
integration was by Emslie [241. In essence, the processor maintains the
phase relationship between the received pulses so that the signal amplitude
adds coherently. Since the noise is independent from pulse to pulse an
improvement in effective signal-to-noise ratio over noncoherent integration
can be achieved. The outputs of the integrator are usually input to, say. a
square-law detector, and coherent integration is therefore also referred to as
predetection integration. As has been noted. it is not necessary for the exact
value of the signal phase to be known for this purpose. If this value is known
some additional benefit can be obtained. exactly analogous to that obtained
by coherent over noncoherent detection of a single pulse discussed in
Section 6.2. In fact. it will be shown that this alternative is equivalent to
implementing a filter that is matched to the entire pulse train. and in what
follows we make the distinction between predetection integration. or coher
ent integration. and what might be termed generalized matched filtering. It
will also be shown however that. practically speaking, there would be no
significant advantage in doing this if increase in receiver sensitivity were the
only purpose.

A receiver for implementing coherent integration is illustrated in Fig. 6.9.
The input is a train of M pulses. each one of the form Pr(t) COS(211flll + 9).
where 9 is assumed to be unknown. This might represent backscatter from a
target or a repeated "I" in a binary communication channel. The oscillator
used in generating the transmitted signal as well as the local oscillators in the
receiver I and Q channels would ordinarily be derived from the same clock.
Coherent operation requires that the clock maintain phase stability over
time periods of the order of the duration of the M-pulse waveform or the
round-trip travel time up to and back from the target. whichever is shorter.'

Noise is not shown in the figure. nor are the sum-frequency terms at the
outputs of the.multipliers, which would be eliminated by the IF stage. Also.
the echo would in general have undergone a Doppler shift due to target
motion that would have to be accommodated. This could be accomplished by
employing a bank of such receivers. in which contiguous local oscillators
would be offset in frequency by an amount equal to the width of a
Doppler-resolution cell. In this way the entire range of possible Doppler
shifts could be covered. and the range rate of the target determined by
noting which of the receivers produces the maximum output. Alternatively,
Doppler shifts could be accommodated by employing a large-BT Doppler
invariant waveform such as is described in Chapters 8 and 9. For purposes of
simplicity in this presentation however. target motion is not considered here.

Practically speaking. it is actually only necessary that the two local oscillator signals remain
orthogonal over this time period.
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N-

(6.51)

- A T cos 8 + rr nJr) cos 27rh, T dTI; - 2 Jo
ATcos8 + X

= 2 I

_ ATsin8 + rr n(T)sin27rh)TdTQi - 2 J(l I

AT sin 8 + Y
= 2 I

The outputs of the multipliers are passed through baseband filters
matched to the video pulse shape. and the peak outputs of the filters in the
in-phase and quadrature channels are A T cos 812 and A T sin 812 respective
ly. The integration which follows. by which SNR improvement is achieved.
is accomplished by periodically overlapping and adding successive filter
responses. the period being equal to the time separation between successive
pulse transmissions. At this point the phase can be determined. if so
desired. by dividing the quadrature term by the in-phase term and applying
the arc-tangent operation_ However. it is only necessary to add the outputs
of the square-law detectors to acquire the coherently summed signal am
plitude; measurement of 8 is not necessary for this purpose. This is possible
because sin~O + cos~8 = 1 and a quadrature receiver must therefore be used.
Eliminating the integrator in Figure 6.9-or equivalently setting M = 1
yields a receiver for measuring the phase of a single pulse. on the basis of
which a coherent matched filter such as is discussed in Section 6.2 could be
implemented.

In Figure 6.9 it has been tacitly assumed that the unknown phase 8
remains constant over the duration of the M-pulse waveform. which (aside
from deterministic variation due to target motion which we do not consider
here) is generally assumed to be the case when coherent integration is
employed. This assumption was not necessary in the preceding section for
noncoherent integration. Here. however. it is clear that if this is not the case
the signal will not add coherently from pulse to pulse and the process will
not yield the desired SNR improvement.

Now. referring to Figure 6.9 and (6.13). at the instant of correlation for
the ith signal pulse the outputs I; and Q, of the filters in the in-phase and
quadrature channels are
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which becomes. after integration

M
M _ MATcos8 + L: XiL: Ii - 2 i~1

;=1

M
M _ MAT sin 8 + L: y,L: Qi- 2 i-I
I~I

(6.52)

136
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And after adding the outputs of the square-law detectors for the in-phase
and quadrature channels

M' . M ...,

Z = ( MAT cos 9 + "'. ) - ( MAT Sin (J + '" Y)-
,+n 2 '-:-1 X, + 2 ,-:-1' (6.53)

and finally. from (6.34)

M2A2T14 MA 2T E
DSNR = 2N2T2/4)1/2 = --z;:;- = M N

(M Il n n
(6.61 )

because l; and Q,have zero mean. and

[n order to calculate DSNR it is necessary to evaluate E(Z~+n), which is
equal to

M
2
A

2
T

2
[( )~ ( )~]E(Z; ... ,,) = A + E LX, + L Y,

, ,

-- -- M 2A 2T 2

Z;+n - Z~ = 4 (6.54)

For the denominator of (6.34) we must calculate the square root of the
quantity

(6.63)

(6.62)

Nil Nil

MA 2T M2EM 2A 2T 2

MNnT =--=--

M

MAT +L X,
2 ,=1

M 2 'SNR = A-T
2
/4

E[I:;~I x,l'

and using the definition of SNR of (5.61)

[n fact. we have effectively implemented a generalized coherent matched
filter to a wav'eform consisting of M repeated pulses. as evidenced by the
factor of 2. The reason the integrated SNR in this case is twice that yielded
by the quadrature detector, (6.61). is because the noise in the quadrature
channel as well as the in-phase channel comes into play there. The situation
is therefore an exact parallel to that discussed in Section 6.2. and it will be
seen that the comparison in performance of coherent integration and
generalized matched filtering also exactly parallels coherent and noncoher
ent detection of a single pulse.

6.4 PERFORMANCE OF COHERENT AND NONCOHERENT
INTEGRATION

Thus we have the important result that the improvement in SNR yielded
by coherent integration is equal to the number of coherent additions M.
whereas as seen in (6.50) for noncoherent or postdetection integration the
improvement goes as YM. the square-root of the number of terms in the
integration. But M is also the increase over a single pulse of the received
signal energy. Thus the essential feature of coherent processing is exhibited;
namely. that all the energy in the received signal is effectively recovered.

To achieve this it was only necessary to be differentially coherent from
pulse to pulse. Now suppose 9 were known. and consider a filter matched to
each pulse. with impulse response: h(l) = Pr(T- l)cos(21T'fn(T- 1)+ 9). It
is not difficult (see Exercise 6.7) to show that in this case. in comparison
with (6.51). the ith output of the in-phase channel at I = T is ~ AT + X,.
Thus the signal is confined entirely within the in-phase channel. the quadra
ture channel need not be considered. and the integrated output is

(6.55)

(6.56)

(6.57)

(6.58)

(6.59)

(

M )4 M
i~ Xi + (L y,)4 = 6M2N~T2

1 i=1 16

(LX,f =L XiLX,LXk LXI
, 'J k J

E[ (L xy + (L yy + 2(L XY(L y,r]
I , , /

E[(L x,r + (L y}f -[E(L X} + E(L y.rr
, , I I

By writing

The first term is

and using (6.40) it is easily shown that

The cross term in (6.56) is. using (6.42),

( )2( )2 ( ) 2M
2
N

2
T

2

2£ L: Xi L: Yi =2£ L X;L Y; = . ('
I I I I

so that (6.56) is equal to M2N~T2/2. Hence (6.55) is

0\
-..J

M 2N 2T 2
o

2
M2N~T2 _ M2N~T2

4 - 4 (6.60) Let us now compare the performance of the integration schemes that have
been considered. in terms of false alarm and detection probabilities.
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6.4.1 Noncoherent Integration

Referring to (6.38), the output of the square-law detector can be written as

Equation (6.67) is simple to evaluate because the expected value of all cross
terms involving odd powers of either X, or Y, vanish, and by using (6.39)
and (6.41) (see Exercise 6.8),

M (AT )2 (AT )2
SM = i~ """'2 cos (Jj + Xi + 2 sin (Ji + Y, (6.64) cr 2 = MN t;T

2 (1 + 2~)
.'of 4 No

(6.68)

Now for the false alarm probability set E equal to zero in (6.66) and
(6.6R), let J-L = MNoT/2 and cr 2 = MN~T214, and the threshold T'/ is de
termined from

where Xi and Yi are mean-zero Gaussian random variables with variance
No T/ 4. The random variable S", has a noncentral chi-square distribution
with 2M degrees of freedom. For an exact solution the reader is referred to
[211 which presents a·~oncise and thorough discussion of chi-square together
with exact performance calculations giving Pd vs Pt as a function of EI No
and M based on expansion of integrals of the chi-square distribution in a
Gram-Charlier series. Here, a simplified approximate solution shall be
presented which approaches the exact solution as M becomes large and in
fact is accurate to 1 dB for M 2: 4 for typical situations of interest.

Equation (6.64) can be written as

f
~ -(X_I£)212,,2 dx _ 1 ()

Pta = " e (21Tcr l )112 - 2(1- erf y)

where

(
J-L - T'/)

Y = V2cr

(6.69)

with

M

SM= L R I
1==1

(6.65)

and

T'/ = ~ No T( 1 +y~) (6.70)

where the value of J-LM follows directly from (6.38). Calculation of cr;,
requires evaluating

where the Ri are independent. identically distributed random variables. By
the central-limit theorem therefore (Section 2.9), the probability density
function of S /of approaches a Gaussian in the limit as M -+ Xl with mean J-L/of
and variance cr~ given by

(
A2T2 )2

E(R~) = E -4- + ATXi cos (Jj + A TYi sin (Ji + X; + Y;

= E(a + b + e + d + d
2 2 2 2 '=E(a + b + e + d + e- + 2ab + 2ae + 2ad + 2ae

+ 2be + 2bd + 2be + 2ed + 2ee + 2de) (6.67)

which shows more directly the benefit in the improvement of SNR, and that
P

d
can be made arbitrarily close to unity, for any y, if M can be made large

enough.
A physical picture of the effect of M can be gained by noting that the

separation of the peaks of the Gaussian distributions under Ho and under
HI' is. from (6.66). equal to ETMI2. Also. the standard deviation under Ho
is YMNoT12. In order to achieve a low value of Pfo and a sufficiently large
P

d
it is necessary that the probability distributions under Ho and HI be

distinctly separated with as little overl~ as possible. To achieve this it is
necessary that (ETMI2)YMNoTI2 = \/ME/No be large.

In order to determine the range of M for which (6.71) is a useful
approximation. plots of Pd vs E/No are presented in Figure 6.10 for different

(6.71)

-f~ -(x-I£M)212,,~ -=dx_
Pd - " e Y'21Tcr w

1 I [(~ ~ -y)]
2 I1+ ert (1+ ~r

The detection probability is

(6.66)

(
AT )2 (AT )2

R, = """'2 cos (Jj + Xi + """'2 sin (Ji + Y,

MA
2
T

2
MNoT MNoT ( E)"=ME(R)= +--=-- 1+-

r-M I 4 2 2 No

cr;, = M[ E(R~) - (E(R,»2]

0\
co
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Figure 6.10 Comparison of SNR requirements with noncoherent integration
(Pr• = 10- 2

).

6.4.2 Coherent Intqration

In this case an exact solution is obtained. For predetection integration the
output of the square-law detector is (6.53).

values of M ~4 using (6.71) along with more exact results from [21J which
are based on the 2M-degree-of-freedom noncentral chi-square distribution.
The comparison in Figure 6.10 is for Pra = IO- z. In all cases the value of
EI No required to obtain a given value of Pd as determined using (6.71) is
within 1 dB of the value obtained using the more exact solution.

(6.73)

(6.74)

(6.76)

(6.78)

(6.77)

N

z= L (B, +X;)2
t= I

f
~ ( Z+(3) [(Z{3)1/2] dz

Pd = ~1 exp - 2a-" 10 ----;r- 2a-"

= f~, lIZ X exp(- X
Z
~ aZ)/o(Xa) dx

)<-.1" p,.)

_ I (z )(N-2l/4 [ (z + (3)] [(Z{3)112]
P(z) - ~ Ii exp - 2 2 I NI2 -1 --.-,-

2a- fJ a- a-

where (3 = L;':, I B~. and IN12-1 is the modified Bessel function of order
N 12 - 1. In the case of interest here this takes a very simple form because
N=2. Thus. B I = !MATcosO. B!= !MATsinO. XI =L~I X;. x z =
L~I Yj ' and XI and x! are each independent. mean-zero Gaussian with
variance a- 2

= MNoT/4. It can be shown using 10 (0) = I (see Exercise 6.9)
that

Pra = f~ exp(-~) dzz =exp(- 1/2Z ) (6.75)
J~- 2a- 2a- 2a-

where for the square-law detector the threshold has been defined as 1/ 2
• and

where the B, are constants. the X; are independent, mean·zero Gaussian.
with Var(x,) = a- 2

• and ~ has a probability density [21)

which has a noncentral chi-square distribution with two degrees of freedom.
Now in general, a noncentral chi-square random variable z with N degrees
of freedom is of the form

where a
2

= 2MEINo. Equations (6.75) and (6.76), in which no approxi
mations have ~een made. are seen to be identical with (6.19) and (6.21)
with 2EINo in the latter case being replaced by 2MEINo. Thus there is an
effective improvement in SNR by a factor of M which goes over directly into
the calculation of Pd ' and the curves of Figure 6.6 apply exactly with MEl No
substituted for EI No on the vertical axis. This is the expected result.
Coherent predetection integration increases SNR by a factor of M and.
aside from this change, the subsequent nonlinear operation reproduces
exactly the results of Section 6.2.

For generalized matched filtering, by (6.22). (6.23). (6.63) and (5.52)

Pd = ~ [1 + erf( ~2~E - " )]

where. as before, " is determined from Pra using

I ~MEPra = 2[1- eri(y)). 1/ = 2" No(6.72)
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The latter two results. (6.75). (6.76) and (6.77), (6.78) illustrate that the
difference between coherent-integration employing square-law detection
and generalized matched filtering is identical to that between coherent and
noncoherent detection of a single pulse as discussed in Section 6.2.

6.5 SUMMARY OF COHERENT AND NONCOHERENT
DETECTION AND PROCESSING

Coherent detection of a single pulse requires employment of a coherent
matched filter. for which the exact value of the phase of the input signal
must be known. For noncoherent detection of a single pulse the filter
bandwidth is matched to that of the signal but the phase is unknown. The
difference in the two cases in terms of the transmitted pulse energy required
to achieve a given value of Pd for a specified value of Pra becomes significant
(a - 3 dB advantage in the coherent case) only for small values of £1NI)
say in the vicinity of 3 dB. This occurs because in the coherent case the
quadrature noise term is eliminated. whereas for noncoherent detection
both the in-phase and quadrature noise terms come into play. However, for
E/No> 10 dB this becomes less important because the quadrature-channel
noise under this condition has very little effect on the fluctuations of the
output signal-plus-noise envelope (or envelope squared), and is therefore
effectively eliminated. For such values of £1 No the difference in SNR
required to achieve a given value of Pd for a fixed Pra between coherent and
noncoherent detection is about 1 dB, and eventually becomes negligible as
E/ No increases further.

For a fixed value of single-pulse energy £ the detection capability of a
sensor can be increased by employing a waveform consisting of a train of M
pulses and adding. or integrating. their cumulative responses. If integration
is done after detection-postdetection or noncoherent integration-which
destroys the phase relationship between successive pulses. the signal pulses
add incoherently and the integrated SNR is increased by a factor of YM.
However. if the phase relationship between pulses is maintained by employ
ing stable local oscillators, and the integration is implemented prior to
detection. the SNR is improved by a factor of M, which of course can
amount to a very large difference (see Exercises 6.14. 6.15,6.16). In this it
is not necessary that the absolute value of the signal phase be known. The
phase however could be measured and. ideally. with the use of this
information a filter matched to the entire M-pulse waveform could be
implemented. The relative advantage thereby obtained however is identical
to that between coherent and noncoherent detection of a single pulse, of the
order of 3 dB in transmitted signal energy for MEl No :5 2. and essentially
negligible for ME/No> 10. As a result. exact phase knowledge is not
important in coherent integration. because integration is generally employed
expressly for the purpose of achieving large values of ME/No. It should be
noted however that there might be reasons other than signal detection for

TABLE 6.1

Single Pulse

COHERENT DETECTION

1
Pro = 2 [1 - erf('Y»)

Pd = ~ [ 1 +erf( f!- -'Y) J
"

NONCOHERENT DETECTION

(~ ( X
2 + a ~)

Pd = }r-21n 1',.1"2 exp - --2- [,,(xa) dx

= Q(a. -21n Ph)

where a = 2E/N" and Q(a. fJ) is Marcum's Q function

M •Pulse Waveform

NONCOHERENT INTEGRATION: APPROXIMATE SOLUTION FOR M ~ 4

1
PI. = 2 [1 - erf( 'Y »)

{ [ ~M E... - 'Y]}P _ 1 1 rf 2 N"
d - 2 + e ( 1 + ~)'/2

COHERENT INTEGRATION

fs (2 + 2)
P

d
= exp - ~2a lo(a. x) dx .

(-2 In p,.>II!

= Q(a.,. -21n PI.)

where a" = Me/No

G~n~rtllit.~dMatched FilJering for M Pulses

Pro = HI - erf( 'Y»)

Pd = i[1 + erf(J~~ - 'Y)]

which knowledge of the signal phase might be of interest. This is discussed
in Chapter 7.

A summary of the quantitative performance results of this chapter are
presented in Table 6.1. Although a specific form of the signal was used. the
results are perfectly general. This is demonstrated in Chapter 10. where the
same results are obtained using a generalized complex signal. We note that
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calculations of Pd vs Pt. vs EINn and M can in all cases be carried out by
using Figure 6.6 and the table of values of the error function in the
Appendix. For predetection integration. the vertical axis of Figure 6.6 should
be interpreted as MElNn rather than E I Nil"

EXERCISES FOR CHAPTER 6

6.1 A real bandpass function X(/) can be written as Rlh(/)e i2"fll'J where
h(/) can be complex. If y(/) = ReI g(t)e,2"'l"J show that

fx x( I)y( I) dl = 2~ n~Jh R ( i )gR ( i) + h, ( i) g, ( i)]
by making use of the carrier sampling theorem (4.15). It is assumed
that X(/) and y(t) are observed at the output of a bandpass filter such
as shown in Figure 6.1. Recall that the Nyquist rate here is !it = I lB.

6.2 For input A sin 211'f.l + B cos 211'f.l determine the outputs of detectors
in Figure 6.4a.b.c. Show how low-pass filtering or video amplification
produces the desired results. Show that b produces a single harmonic
at 21., whereas the others produce an infinite number of harmonics.

6.3 For 5(/) = Pr(t) cos(211'f.,I + 0) show that the response of a matched
filter appears as in Figure 6.5a, whereas for a filter matched in
amplitude only the output appears as in Figure 6.5b (assume 0 ¥ 0).

6.4 For input A cos(211'f.,1 + 0) calculate the SNR as defined in (5.61) at
the output of
a. a filter h(/) = Pr(/) cos(211'f.)(T - I) + OJ
b. a filter h(/) = Pr(t) cos 211'!.J( T - I)
Assume noise to be white, Gaussian with PSD Nr/2.

6.5 The Rice distribution in (6.17) differs from that in (3.53) in that in
(3.53) the variable r has the dimensions of volts whereas in (6.17) the
dimension of z are volts x Tl2 which is the effect of the filter. Find
the appropriate transformation of the variable r so that (3.53) reduces
to (6.17) and demonstrate this.

6.6 Show that E(X~)= E(Y:) = 3N~T2/16 where Xi and Y, are given
by (6.37). Using (6.40), the result of (6.4) and E(n(/,)n(t 2 )J =

!Noc5(t2 - tIl, also show that X; and Y; are uncorrelated; that is
E(X;Y;) =E(X;)E(Y;).

6.7 Verify that the ith output of generalized matched filter is !A T + Xi;
that is, the quadrature noise term vanishes.

6.8 Evaluate (6.67) and show that (6.66) reduces to (6.68).

6.9 Show that chi-square with two degrees of freedom reduces to the Rice
distribution.

6. JO An observation takes place over 10 s. For Pr. = 10 -~ and
PRF = 150 pulses/s write down an expression for the probability of k
false alarms during this interval. What would be the expected value of
k. and the mean time between false alarms. Repeat for Pta = 10- 4

(see Section 11.4).

6.11 The dimensions of the threshold 1] for a matched filter and for ideal
noncoherent detection are different. For !N(I = 1O-~ W/Hz find the
value of E for a coherent matched filter such that P'a = 10- 4 can be
obtained with a threshold of 1] = 22. What would be the resulting
value of Pd ?

For the same value of Pd and Pta find the required value of E INn
for an envelope detector. Assume the noise is limited in bandwidth to
the signal bandwidth. Find the required value of received signal
power for a threshold of 1] = 22. Discuss the difference in units.

6. J2 A target is to be observed for JO s with a sensor operating with a PRF
of JOO. It is desired that the probability of more than one false alarm
during this interval be :s]() -4. The detection probability is to be 0.998.
Define the necessary system parameters (i.e. SNR and threshold) to
achieve this for a coherent system (see Section 11.4).

6.13 For E INu =20 find Pd for Pta = JO- 4 and 1O-~ for single pulse
coherent and noncoherent detection. Repeat for EINn = 30. You will
need tables of the Q function for this.

6.J4 A system employs postdetection integration. What values of Mare
required to achieve a detection probability of Pd =0.99 for Pt. = 10- 3

for values of EINn of 0.25. 2. 10 and 100.

6.15 Repeat Exercise 6.13 assuming predetection integration and compare
results.

6.16 Repeat Exercise 6.14 for generalized matched filtering and compare
results.


